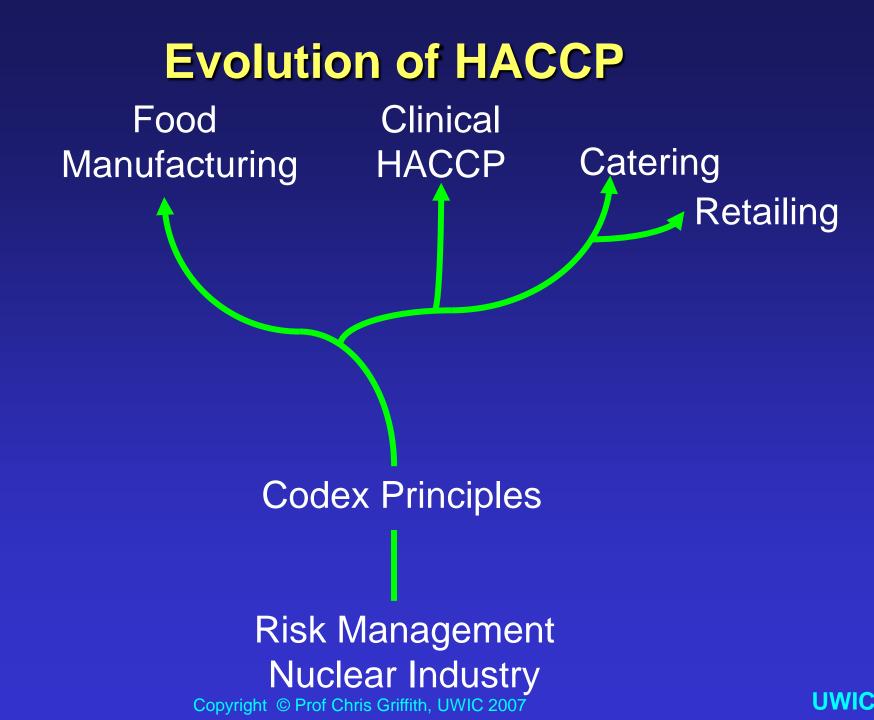
Quality Assurance and Endoscopic Reprocessing: The Clinical Application of HACCP

Professor Chris Griffith Technical Director Von Holy Consulting Emeritus Professor Cardiff School of health Sciences

Contents

- Endoscopies and Risk
- Managing Risk –QA/QC
- PRPs and HACCP
- Clinical Application of HACCP; endoscope reprocessing


What is safe?

Life is a risky business.....

Codex Risk Analysis Framework

HACCP

"A risk management system based upon identified, named and validated control measures, implemented at critical control points"

Griffith 2006

Endoscopies

Are there hazards and risks associated with using endoscopes and if there are what can we do about it ?

Endoscopies

"Approximately 5 million gastrointestinal endoscopies performed each year in the USA. Each procedure involves contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membrane. A major risk of all such procedures is the introduction of pathogens that can lead to infection"

Guidelines for Disinfection and Sterilization CDC 2008

Endoscopies

OK so there maybe a risk – how great is that risk and are we likely to find out about it ?

Risk Management

One can mitigate, control, transfer, or evade risk but can never eliminate it even with the greatest effort

Huihui 2010

Exogenous Endoscopy-Related Infections

- There is a potential risk and this can be managed using "Risk Management " strategies
- The potential Endosocopy Infection Risk can be described as EIR and is based on
- $EIR = IR \times CR \times DR$

Exogenous Endoscopy-Related Infections

- $EIR = IR \times CR \times DR$
- IR =Inherent Risk ie severity of hazards,probability of endoscope contamination
- CR= Control Risk ie effectiveness of decontamination procedures x compliance (consider types of errors and consistency)
- DR= Detection risk ie to know and record IF an infection occurs –higher for outbreaks

Endoscopy Related Risk: Inherent Risk (IR)

- Many patients maybe colonised or infected with a range of transmissible pathogens
- The consequences of some of these can be severe

Microorganisms Transmitted by (or Shown to Contaminate) Endoscopes

]	Cleaning procedure	Disinfection process	Rinsing process	Automated processor	Contaminated processing or water bottle
Bacteria P aeruginosa		Х	Х	Х	Х	Х
	Klebsiella sp.	Х	Х			
	Enterobacter sp.	Х	Х			
	Serratia marcesens	Х	Х			
	Salmonella sp. Incl. typhi	Х	Х			Х
	Helocobacter pylori	Х	Х			Х
	Bacillus sp.	Х	Х			
	Proteus sp.	Х	Х			
	Mycobacterium tuberculos	sis X	X			
	Atypical mycobacteria	Х	Х	Х	Х	
Fungi	Trichosporon sp.		X		Х	Х
	Rhodotorula sp.	Х			Х	Х
Parasite	Strongyloides	Х	Х			
Virus						
						1.0.671

Multidrug Resistant Outbreak of Klebsiella pneumoniae

- 16 patients identified with post ERCP Klebsiella pneumoniae(CTX-M-15.) 8 blood stream infections, 4 biliary tract infections, 4 fecal carriage
- Routine surveillance of endoscopes were negative –outbreak strain finally found after repeated flushing and brushing of the channels of one duodenoscope
- Strict adherence to reprocessing procedures ended the outbreak

Endoscopy 2010 : 42(11) 895-899

Inherent Risk

- Between 1966 and 2005 70 outbreaks were described in 64 papers
- Bronchoscopy accounted for 50% of reported outbreaks
- Inadequate decontamination practices leading cause of contamination
- 91 % could have been prevented with improved QC procedures
- Seoane-Vazquez et al 2006 Curr Med Res Opin

Exogenous Endoscopy-Related Infections

 Reports and analysis are based on outbreak information and these may only represent a small fraction of the actual cases

Control Risk

"The problem in infection prevention does not lie with new control measures or the need for wonder chemicals BUT it is a behavioural problem and requires the consistent, full and correct implementation of known infection prevention practices and management is the key "

Griffith RSPH 2009

Endoscopes and Infections
 But we have guidelines eg

 BSG working group 1997, 2003
 Multi society 2003
 APIC 1997, 1998, 1999
 ASGE 1999

- But guidelines are NOT management systems and they do disagree on some aspects eg drying (Muscarella 2006 Am J Gastroenterol)
- And people do not always comply with them

Compliance with Guidelines

"Multiple studies in many countries have documented lack of compliance with established guidelines for disinfection and sterilization"

"Audits show personnel do NOT consistently adhere to reprocessing guidelines"

CDC 2008

Report on Endoscopes Decontamination in NI

- More active approach to training
- In too many locations the area for decontamination was inadequate
- Unclear lines of communication
- Small number had developed audits
- Guidance available "Disappointing"
- One trust comprehensive IC manual
- Lack of awareness and confusion over decontamination / cleaning
- Steps missed out

Management of Reprocessing

 Tend to be collection of procedures drawn up by Infection Control staff which are often not communicated/ well known to or consistently practised by staff

QA rather than QC

• Range of management options

Management

Infection Prevention Management: Coordinated activities to direct or control infection prevention.

The attainment of infection prevention goals in an effective and efficient way through planning, staffing, organizing, directing and controlling organizational resources

Quality Control

Quality Control (QC)

- Planning inspection operations, identifies errors
- Inspection: sorts good from bad
- Assessing if quality achieved

Quality Control = defect detection

How to Achieve Quality

Quality Assurance (QA)

- All planned and systematic actions necessary for a service or product to satisfy quality requirements
- Confidence that quality requirements are fulfilled

Quality Assurance = defect prevention

Operational Performance: What happens?

Infection Prevention Management Systems

Quality Management System

A formalised system that documents the structure, responsibilities, activities, resources, events and procedures required to achieve effective quality management

Management Systems

- Technically *adequate* and appropriate
- Be seen/perceived by staff as important
- Be a "living breathing part of the day to day activities "
- Be understandable
- Not just focus on processes but also people
- Based upon HACCP ?

HACCP, Hazards and Risk

Managing Food Safety: 2006 Approach

PRPs + HACCP = SF

Reprocessing Endoscopes

PRPs + HACCP = SP ?

PRPs versus HACCP

PRPs

Indirectly with food safety (patient health)

General

HACCP

Directly with food safety (patient health)

Product: Process Specific (procedure specific)

Lower risk FP (HAI)

High risk FP (HAI)

Pre-Requisite Programmes (PRPs)

Describes all those activities other than specific HACCP plans, which affect food (patient) safety.

Universal steps or procedures that control the operational activities within a food establishment allowing production of safe food (clinical environment to minimise patient infection).

Managed and documented

Healthcare Environment: Buildings

- Work + people flows
- Single rooms?
- Design and construction materials
- Implication new builds: PFI

Thursday January 26 2012 Editorial tel. 021 488 4230 Advertising tel. 021 488 4147/4234 Tygertalk Bellville/Durbanville est: 1996 CAPE COMMUNITY NEWSPAPERS

The single woman's toilet in the cardio unit of Tygerberg Hospital is disgusting, says a visitor.

Beltville/Durbanville

Tygerberg's toilet shame

Hygiene should be a major priority at a hospital, but you wouldn't think so if you're unfortunate enough to answer nature's call at this health facility.

VENNESSA SCHOLTZ

A patients' toilet at the Tygerberg hospital is littered with animal droppings on the floor, dirty nappies in a cupboard and sanitary holders in the sink.

The Western Cape Health Department says the toilets in the hospital's cardio unit are cleaned twice a day, but photographs taken by Bellville attorney Janine Myburgh refute this. She says a visit to the hospital toilets left her disgusted.

"I had taken my mother to the unit last week. She'd had a heart attack last year and needed a check-up. She was at the hospital in Worcester and for her check-up she was asked to go to Tygerberg because they have the cardio unit."

She had heard there were long queues at the hospital so made sure they were there at 6.15am.

"There were a few others before us. I soon noticed we were not being helped in the order that we'd come in. I was told patients who came for the first time were given priority.

"I said it was the first time and was informed that couldn't be. Then I was told that patients from rural areas were helped first and again I said my mother qualified as she's from Prince Alfred Hamlet. In addition she's in her 70s and should qualify for priority."

Continued on page 3

UWIC

Testing Requirements and Interpretation of Results for Endoscopy Final Rinse Water

Hazard/Hygiene Indicator	Timing/ Frequency of Testing	Result	Interpretation
Aerobic Colony	Weekly	>100 in 100 ml	UNACCEPTABLE
Count		>10 - ≤100 in 100 ml	UNSATISFACTORY
		0 - ≤10 in 100 ml	ACCEPTABLE
		0 in 100 ml	SATISFACTORY
Environmental mycobacteria	Annually (or more frequently, depending on risk assessment)	>10 in 100 ml 0 in 100 ml	UNSATISFACTORY SATIFACTORY
Pseudomonas aeruginosa	Optional – to be determined in discussion with local microbiologist	>10 in 100 ml 0 in 100 ml	UNSATISFACTORY SATISFACTORY

epic 2: Evidence Based Guidelines February 2007

Section 2.9

- Winning Ways recommend HACCP
- Consider use of HACCP

Possible Clinical Applications: Where?

 Any healthcare process with increased patient risk

Clinical HACCP

Has it been applied? - Yes in following:

- Handling of expressed breast milk 1991
- Airborne contamination in clean rooms 1995
- Infant formula 1999
- Enteral tube feeds 2000
- Post-operative endophthalmitis 2001
- General IC, 2002
- Pharmaceutical product 2003
- Clinical engineering 2003
- Endoscopes 2005
- Bundling 2006

Will HACCP be Used in Healthcare?

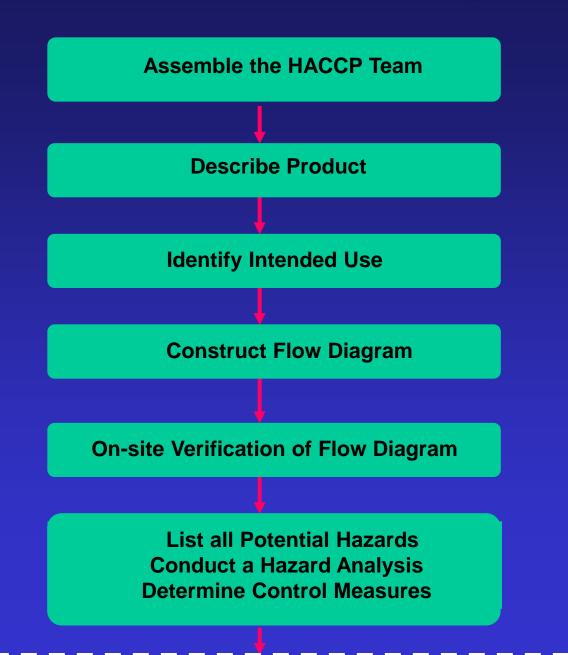
- Interest from:
 - UK
 - Germany
 - US
 - Brazil
 - Australia
- Use recommended in UK epic 2 guidelines
- HACCP medical alliance in US
- 10 years time?

Possible Clinical Applications: What does it do?

- Does not tell you NEW control measures but HOW TO MANAGE them
 i.e. management tool
 - i.e. management to
- QA
- Scientific systematic approach

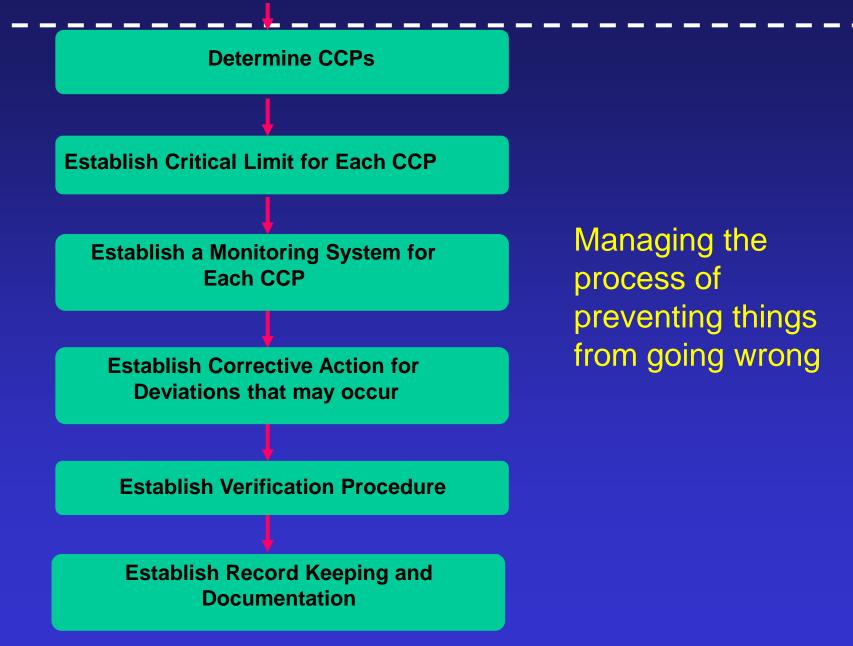
HACCP Case Study: Endoscopes

HACCP


7 Codex Principles:

- 1. Conduct Hazard Analysis
- 2. Determine CCPs
- 3. Establish Critical Limits
- 4. Establish Monitoring Procedures
- 5. Establish Corrective Actions
- 6. Establish Verification Procedures
- 7. Establish Documentation

Codex HACCP Logic Sequence



Codex HACCP Logic Sequence

Identification of what can go wrong

Codex HACCP Logic Sequence

Clinical HACCP LS1 P1

Assemble Team

- Nurses
- Specialist practitioners
- Administrators / Domestic Managers
- Doctors
- Infection Control / Microbiologist
- External consultants?

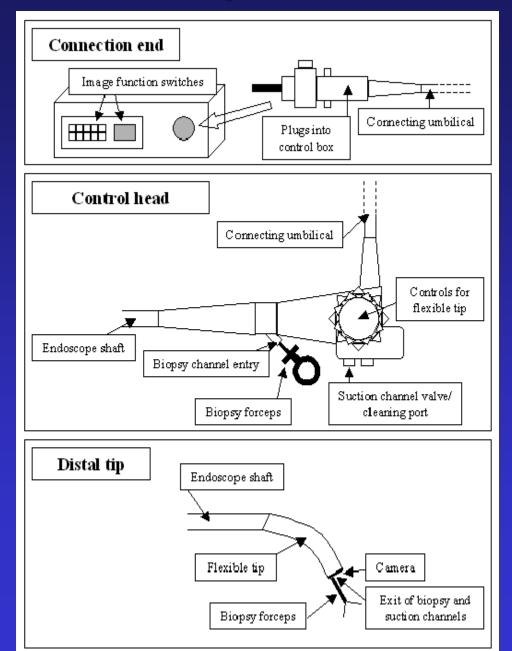
Typically 4-6 Training Chair

Clinical HACCP LS2 P1

Define, describe process / procedure: equipment, consumables, etc.

Endoscopy

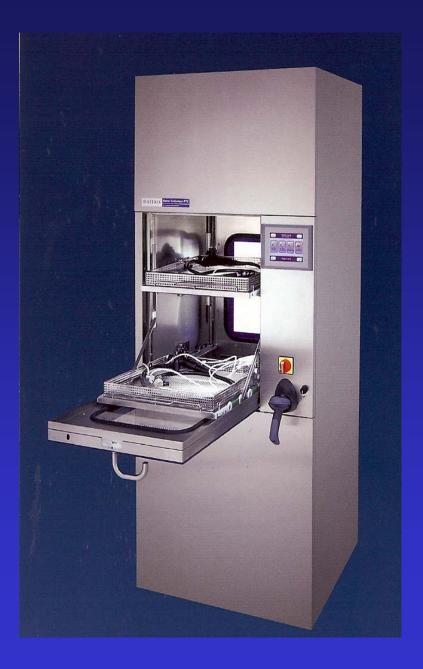
An endoscopy is a test that enables a clinician to look inside the body. Different types of endoscopes can be used to examine different parts of the body. The most common use of endoscopes is to look inside the oesophagus, stomach and duodenum. In addition, biopsies (samples) can be taken of any abnormal looking tissue.


The endoscope itself (see diagram) consists of a number of component parts, one of which is a long tube which contains a light and camera and can be swallowed. This transmits an image of the inside of the organ examined. The scope may also allow air to be blown (e.g. into the stomach) expanding the tissue and making examination easier, or can be used to stop bleeding. Patients may receive mild anaesthetic, analgesics or sedatives during the procedure.

The procedure typically takes 20-60 minutes, depending on the site examined.

After use the endoscope should undergo high level disinfection, this is usually performed in an automated cleaner / disinfector. The chemical used for the process can be quite toxic. Guidelines exist on how this process should be performed.

Endoscope Structure



Stages in C & D After Leak testing

- Cleaning : mechanically clean internal and external surfaces (brushing and flushing)
- Disinfection : immerse scope in high level disinfectant (remove air pockets) and ensure contact of all surfaces with biocide for required time
- Rinse : rinse all channels with high quality water
- Dry : rinse insertion tube and inner channels with alcohol and dry with forced air
- Storage : prevent recontamination and allow drying

Automated Endoscope Reprocessor

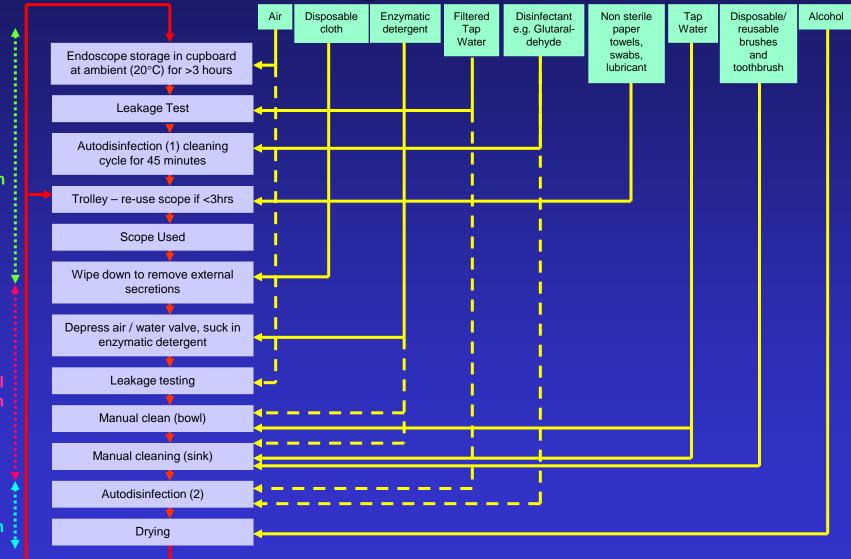
Clinical HACCP LS3 P1

Identify intended use

- Risk of abuse
- Vulnerable groups

Clinical HACCP LS4 P1

Construct process flow diagram (PFD)


- Outline process
- All stages

Endoscope Decontamination Flow Diagram

Risk of endoscope contamination from environment

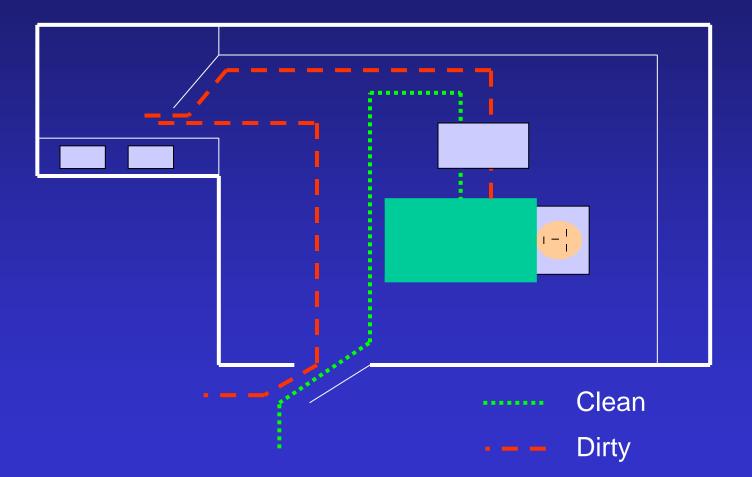
Risk of environmental contamination from dirty scope

Risk of endoscope contamination from environment

UWIC

Clinical HACCP LS5 P1

Verify flow diagram


• Check accuracy / repeatability

 Different shifts / managers / weekends, etc.

• Amend, record, sign and date

Floor Diagram Endoscpy Unit

Copyright © Prof Chris Griffith, UWIC 2007

Clinical HACCP LS6 / P1

Conduct hazard analysis

The process of collecting and evaluating information on hazards and conditions leading to their presence to decide which are significant for patient safety and therefore should be addressed in the HACCP plan.

- Hazard Identified Stage 1
 - in house records
 - epidemiology
 - patient complaints
 - decision trees / C + E analysis

List of all hazards for each step of PFD

Potential Hazards And Sources Associated with Endoscopes

 Patient – Colonoscopes; Campylobacter, Helicobacter, Salmonella,C diff., Rotavirus, etc. parasitic, worms, blood borne-HIV etc

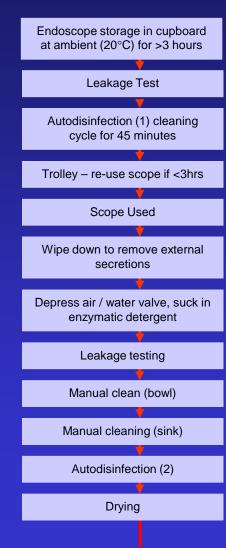
Environment – water, skin, e.g.
 Pseudomonas, Staphylococcus aureus

- Hazard Evaluation Stage 2
 - probability
 - Severity
- Level of concern prioritise
- Reported incidence of infection is low (1in 1.8 million)
- More HCAIs outbreaks associated with scopes than any other medical device (CDC 2008)

- Bioburden found on USED scopes varied from 10⁶ to 10¹⁰ CFU/ml highest in suction channels
- Suggested 1.9% cont. after reprocessing (AJIC June 2006)

Identify control measures

Identify Control Measure


Any action and activity that can be used to prevent or eliminate a food (patient) safety hazard or reduce it to an acceptable level

Clinical HACCP LS7 P2

Determine CCPs

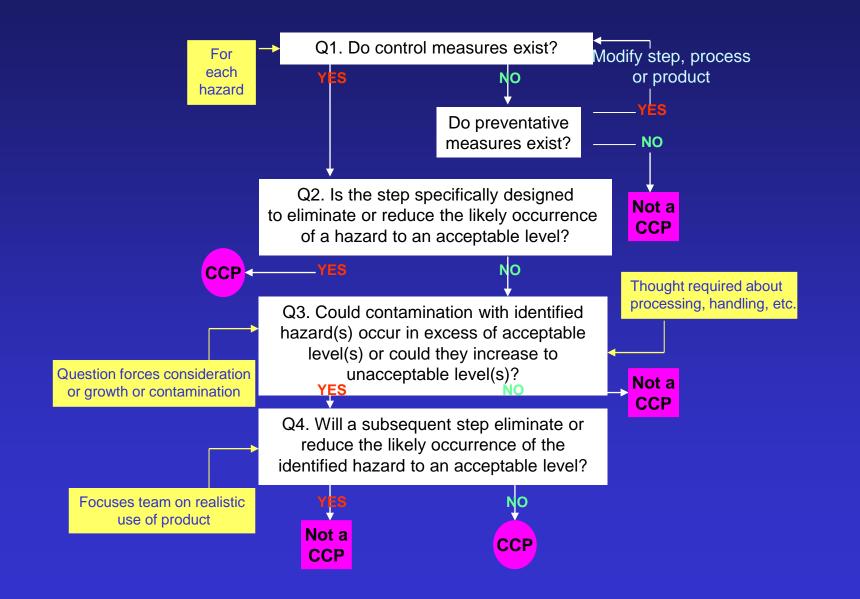
A step at which control can be applied and is essential to prevent or eliminate a food safety (patient) hazard or reduce it to an acceptable level.

Endoscope Decontamination Flow Diagram

Copyright © Prof Chris Griffith, UWIC 2007

Case Study Hazard Analysis

Process Step	Hazard	Control Measure	CCP
Cleaning	Presence of organic matter Biofilms Pathogen survival	Effective cleaning	?


Determine CCPs

Decision trees
 -Codex

• No control measure?

Determine CCPs: Codex Decision Tree

Determine CCPs: Output from use of Codex Decision Tree

Application of the decision tree for the chemical processing stage of an endoscope. The results of the individual questions are recorded as indicated to provide transparency of decision making and can be auditable. Question 1a refers to the question "Do preventative measures exist?".

Cleaning Endoscopes: Quotations

"Amongst the most challenging medical devices to clean" "Instruments from "hell"" "Cleaning crucial to prevent transmission" "Capable of 99.99% reduction bioburden"

Cleaning Endoscopes: Quotations

"Maximum effectiveness from disinfection and sterilization results from first cleaning and removing organic and inorganic materials "

Guidelines for Disinfection and Sterilization In Healthcare Facilities CDC 2008

Cleaning Endoscopes: Quotations

"Thorough cleaning is ESSENTIAL before high level disinfection and sterilization "

Guidelines for Disinfection and Sterilization In Healthcare Facilities CDC 2008

Cleaning Endoscopes: Quotations

"Meticulous cleaning must precede any sterilization or high level disinfection. Failure to perform good cleaning can result in disinfection failure and outbreaks of infection "

Guidelines for Disinfection and Sterilization In Healthcare Facilities CDC 2008

Quotations

"2% of patient ready endoscopes returned +ve cultures"

"All 12 smaller air / water channels had extensive biological soil"

"Presence of biofilms increases risk of decontamination failure"

Pajkos et al., J. Hosp Infection, 2004

Determine CCPs: Output from use of Codex Decision Tree

Application of the decision tree for the chemical processing stage of an endoscope. The results of the individual questions are recorded as indicated to provide transparency of decision making and can be auditable. Question 1a refers to the question "Do preventative measures exist?".

Copyright © Prof Chris Griffith, UWIC 2007

UWIC

Summary So Far: Identified

- All important hazards within process
- Control measures
- Where control measures implemented i.e. focus attention
- Next P 3, 4, 5 How to manage CCPs

Establish Critical Limits LS8 / P3

Critical limits

Criteria which separate acceptability and unacceptability

• Target Level

Values of a parameter, at a critical control, point, which have been shown to eliminate or control a hazard

Deviation

Failure to meet a critical limit

Establish Critical Limits

Setting CLs

in house validation
published data - models
expert advice
Microbiological / rapid tests
SPC

Establish Monitoring LS9 / P4

Show CCPs controlled

Detects loss of control at CCP

Monitor

The act of conducting a planned sequence of observations or measurements of control parameters to assess whether a CCP is under control

Table 1: Results of bacteriologic and bioluminescence sampling. Mean values, data ranges and percentage of failures against set levels for both methods at two units.					
Number of endoscopies examined: Unit A n=25, Unit B n=38					
	Unit A		Unit B		
	Bacteriology	АТР	Bacteriology	ATP	
	(cfu/sample)	(RLU/sample)	(cfu/sample)	(RLU/sample)	
Suction channel	0.8 <i>(0 - 7)</i>	192 <i>(</i> 26 - 531)	1.2 <i>(0 - 8)</i>	1191 (22 - 10030)	
pre-disinfection	4%	4%	18%	42%	
Biopsy channel	0.3 (0 - 2)	683 (29 - 3829)	1.7 <i>(</i> 0 - 14)	1389 (69 - 12436)	
pre-disinfection	0%	16%	18%	45%	
Suction channel	0.3 (0 - 6)	60 (24 - 103)	0.1 <i>(0 - 1)</i>	70 (17 - 354)	
post disinefction	4%	0%	0%	0%	
Biopsy channel	1.1 <i>(0 - 14)</i>	82 (20 - 502)	0.1 <i>(0 - 1)</i>	67 (20 - 374)	
post disinefction	8%	4%	0%	0%	
Endoscope	0.2 (0 - 2)	1387 (20 - 12102)	0.0 <i>(0 - 0)</i>	353 (38 - 2715)	
exterior and tip	0%	44%	0%	16%	
Post disinfection	0.4 <i>(0 - 4)</i>	53 (26 - 128)	0.0 <i>(0 - 0)</i>	51 (24 - 110)	
rinse water	4%	0%	0%	0%	
Endoscope	0.4 (0 - 3)	264 (25 - 1861)	1.7 <i>(0 - 14)</i>	355 (119 - 839)	
resting surfaces	4%	12%	26%	18%	
Image function	0.5 <i>(0 - 3)</i>	5322 (111- 74457)	0.03 <i>(0 - 1)</i>	401 (88 - 3677)	
switch panel	4%	92%	0%	13%	
Key:	Mean <i>(Range)</i>	Failure levels set at >=3cfu/sample for microbiology			
	% above	and >500 RLUs for ATP bioluminescence			
	benchmark values				

Monitoring Activities

- Checks (e.g. records)
- Inspections: Processing equipment
- Inspections: Endoscope itself
- Measuring

Establish Monitoring

- Real time data!
- Continuous: discontinuous
- When and frequency
- Who
- How
- With what

Establish Corrective Actions LS10 / P5

Corrective action

Any action to be taken when the results of monitoring at the CCP indicate loss of control, i.e. deviation outside critical limit

Establish Corrective Actions

- Who has responsibility / informed
- What actions

 process control
 product control
 prevent recurrence

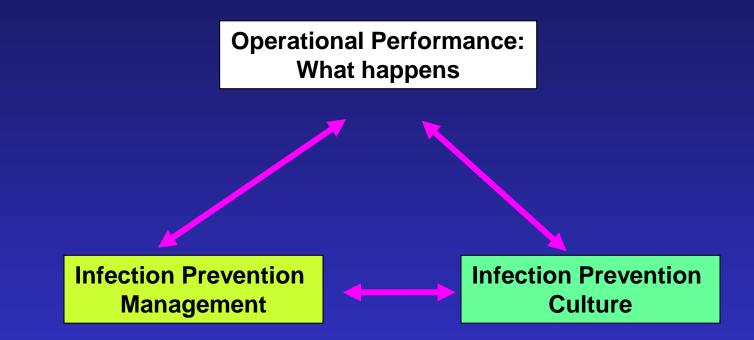
Verification LS11 / P6

• Verification

Application of methods, procedures, tests and other evaluations in addition to monitoring to determine compliance with the HACCP plan

HACCP Terms

Validation Obtaining evidence that elements of the plan are effective


i.e. is the CM or plan capable of controlling all relevant hazards or will it work?ALSOAt time of initial formulation the plan is effective

Q Don't we manage the process already?

A Yes and No – variability
 Problems with private practice(2003)
 NI June 2004
 Management Failures

Comparison Between HACCP and Management Systems in Two Endoscopy Units

HACCP LS	UNIT A	UNIT B
LS1	No	Partial
LS2	Νο	Partial
LS3	Νο	Νο
LS4	Νο	Νο
LS5	Νο	Νο
LS6	Νο	Partial
LS7	Partial	Partial
LS8	Partial	Partial
LS9	Νο	Νο
LS10	Νο	Νο
LS11	Νο	Partial
LS12	No	Partial
LS7 LS8 LS9 LS10 LS11	Partial Partial No No No	Partial Partial No No Partial

Summary

There is a risk associated with endoscopies and HACCP can and in some parts of healthcare Is being applied in a clinical setting

Benefits:

- Consistency: Documentation and records
- Transparent: Auditability
- Comprehensive and specific
- Pro-active / preventative

Barriers

- Attitudes
- Behavioural Change

Costs

• Potential to save money and improve health

Basic Control Measures Used in Infection Prevention

- Relatively well documented
- US and UK
 - New epic 2: National Evidence Based Guidelines Feb, 2007
- MANAGEMENT procedures NOT well defined BUT they are KEY

Clinical Application of HACCP

- Commodity dominated: HACCP
 - Surgical equipment
 - Endoscopes
 - Re-usable items
- Patient dominated: HACCP Principles
 - Intravenous infusion
 - SSIs
 - -VAP
 - UTI
 - LRTI

HIS 2006: Lowbury Lecture (W Jarvis) Bundling: What is Involved

- Collection of practices or process steps
- Based on solid evidence
- All steps need implementing
- Monitored
- Outcomes evaluated and recorded

Comparison of HACCP Based Systems and Care Bundles

HACCP Based System

- Multidisciplinary
- Documentation needed
- Managerial support / leadership
- Process related
- Validated control measures
- Monitoring implementation
- Series of CM

Care Bundles

- Multidisciplinary
- Documentation needed
- Managerial support / leadership
- Process related
- Evidence based guidelines / measures
- Checking implementation
- Collection/ bundles of activities
- Real time

Real time

Comparison of HACCP Based Systems and Care Bundles

HACCP Based System

- Outcome / end product is successful criterion
- Works in conjunction with PRPs
- Success requires implementation of all control measures
- Designated responsibilities

Care Bundles

- Outcome / end product is successful criterion
- Works in conjunction with good general hygiene and infection control practices
- Success requires implementation of the "whole bundle"
- Designated responsibilities

Bundling Lacks

Formalised

- Details of monitoring
- Hazard Analysis
- Specified Corrective Actions
- Validation and Verification
- International definitions and agreement

Does Bundling Work?

Cocanour et al., J of Trauma (2006)61: 122-130

VAP 22-32 Infection / 1000 ventilation days

Bundle of activities – no decrease Bundle and auditing and feedback 0-12 infections / 1000 ventilation days

Average costs of VAP \$50,000

Checklist Continues To Stop Bloodstream Infections In Their Tracks, This Time In Rhode Island

Friday, 03 December 2010 18:05

Using a widely heralded Johns Hopkins checklist and other patient-safety tools, intensive care units across the state of Michigan reduced the rate of potentially lethal bloodstream infections to near zero.

The new study, published in the December issue of the journal *Quality and Safety in Health Care,* found that the rate of central-line associated bloodstream infections (CLABSIs) fell by 74 percent across Rhode Island's 23 ICUs over two and a half years. Researchers estimate the interventions prevented 42 CLABSIs, saved 10 lives, reduced ICU stays by 608 days and saved \$2 million. "Nearly all of these infections are preventable," Pronovost says. "Unlike breast cancer, we have a cure. Yet some hospital infection rates are 10 times what they should be."

The safety program developed at Johns Hopkins includes the much-heralded , cockpit-style checklist for doctors and nurses to follow when placing a central-line catheter. Along with the checklist, the program promotes a "culture of safety".

Berenholtz Sm *et al*. Critical Care Medicine, 2004; 32: 2014-20

- CVC rate decreased from 11.0 to 0/12000 cvc days
- Savings
 - 43 infections
 - 8 deaths
 - \$1.95m

Will HACCP based approaches succeed in healthcare?

Managing Patient Safety: Potential Benefits

Reduced risk of illness

• Less wastage / shorter stays

• Better turnover

Improved confidence

Managing Patient Safety: Barriers

- Lack of real commitment
- Lack of legal requirement
- Financial constraints
 Short term
- Human resource constraints
- Human nature
- Lack of expertise/technical/support/data
- Inadequate infrastructure/facilities/PRPs
- Inadequate communication

Managing Patient Safety: Cost Balance

- **Failure Costs**
- Illness / death
- Loss of revenue
- Increased infection costs
- Compensation

Cost Balance

Implementation Costs - Initial

- Preparation/planning time
- Consultants?
- Training
- Equipment
- Changes to layout
- Documentation

Deduct from the above any financial incentives

Copyright © Prof Chris Griffith, UWIC 2007

UWIC

Managing Patient Safety: Cost Balance

Implementation Costs - Ongoing

- Cleaning?
- Monitoring/recording
- Updating/training

Copyright © Prof Chris Griffith, UWIC 2007

UWIC

Cost Balance: See Dispelling the Myths

- Satus Quo
- Higher HCAIs
- Waste
- Patient concerns

HACCP: PRPs Lower HCAIs Improved patient turnover Higher implementation costs Reduced overall costs

Operational Performance: What happens?

Infection prevention Management Systems

Infection Prevention Culture

